专题03 三角函数与平面向量文-2018年高考题和高考模拟题数学(文)分项版汇编 Word版含解析

3.三角函数与平面向量 1. 【2018 年新课标 I 卷文】已知函数 A. C. 【答案】B 的最小正周期为 π ,最大值为 3 的最小正周期为 B. ,则 的最小正周期为 π ,最大值为 4 的最小正周期为 ,最大值为 4 ,最大值为 3 D. 点睛:该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题 的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果. 2. 【2018 年天津卷文】将函数 A. 在区间 C. 在区间 上单调递增 上单调递增 B. 在区间 D. 在区间 的图象向右平移 个单位长度,所得图象对应的函数 上单调递减 上单调递减 【来源】2018 年全国普通高等学校招生统一考试文科数学(天津卷) 【答案】A 【解析】分析:首先确定平移之后的对应函数的解析式,然后逐一考查所给的选项是否符合题意即可. 详解:由函数 之后的解析式为: 即 单调递减区间满足: 个单调递减区间为 ,令 图象平移变换的性质可知:将 的图象向右平移 个单位长度 , .则函数的单调递增区间满足: 可得函数的一个单调递增区间为 ,即 ,选项 C,D 错误;本题选择 A 选项. ,选项 A 正确,B 错误;函数的 ,令 可得函数的一 点睛:本题主要考查三角函数的平移变换,三角函数的单调区间等知识,意在考查学生的转化能力和计算 求解能力. 3.【2018 年文北京卷】在平面坐标系中, 是圆 上的四段弧(如图) ,点 P 在其中一 段上,角 以 O为始边,OP 为终边,若 ,则 P 所在的圆弧是 A. 【答案】C B. C. D. 【解析】分析:逐个分析 A、B、C、D 四个选项,利用三角函数的三角函数线可得正确结论. 详解:由下图可得:有向线段 为余弦线,有向线段 为正弦线,有向线段 为正切线. A 选项:当点 在 , , 上时, , , ,故 A 选项错误;B 选项:当点 在 , 故 B 选项错误; C 选项: 当点 在 上时, 上时, , ,故 C 选项正确;D 选项:点 在 ,故 D 选项错误.综上,故选 C. 上且 在第三象限, 点睛:此题考查三角函数的定义,解题的关键是能够利用数形结合思想,作出图形,找到 对应的三角函数线进行比较. 4. 【2018 年新课标 I 卷文】 已知角 的顶点为坐标原点, 始边与 轴的非负半轴重合, 终边上有两点 ,且 A. B. C. ,则 D. 所 , 【答案】B 详解: 根据题的条件, 可知 三点共线, 从而得到 , 因为 , 解得 ,即 ,所以 ,故选 B. 点睛:该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系, 余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果. 5. 【2018 年全国卷Ⅲ文】 的内角 的对边分别为 , , , 若 的面积为 , 则 A. B. C. D. 【答案】C 点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理。 6. 【2018 年全国卷Ⅲ文】函数 的最小正周期为 A. B. C. D. 【答案】C 【解析】分析:将函数 进行化简即可 详解:由已知得 , 的最小正周期 ,故选 C. 点睛:本题主要考查三角函数的化简和最小正周期公式,属于中档题 7. 【2018 年全国卷Ⅲ文】若 A. B. C. D. ,则 【答案】B 【解析】分析:由公式 可得。 详解: ,故答案为 B. 点睛:本题主要考查二倍角公式,属于基础题。 8. 【2018 年浙江卷】 在△ABC 中, 角 A, B, C 所对的边分别为 a, b, c. 若 a= , b=2, A=60°, 则 sin B=___________, c=___________. 【答案】 3 点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和 角之间的关系,从而达到解决问题的目的. 9.【2018 年文北京卷】若 是_________. 【答案】 的面积为 ,且∠C 为钝角,则∠B=_________; 的取值范围 【解析】分析:根据题干结合三角形面积公式及余弦定理可得 ,将问题转化为求函数 的取值范围问题. ,可求得 ;再利用 详解: , ,即 , , 则 ,故 . , 为钝角, , 点睛:此题考查解三角形的综合应用,余弦定理的公式有三个,能够根据题干给出的信息选用合适的余弦 定理公式是解题的第一个关键;根据三角形内角 题转化为求解含 的隐含条件,结合诱导公式及正弦定理,将问 的表达式的最值问题是解题的第二个关键. 中,角 所对的边分别为 , , 的平分线交 于 10. 【2018 年江苏卷】在 点 D,且 【答案】9 ,则 的最小值为________. 点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即 条件要求中字母为正数)、 “定”(不等式的另一边必须为定值)、 “等”(等号取得的条件)的条件才能应用, 否则会出现错误. 11. 【2018 年江苏卷】已知函数 ________. 【答案】 的图象关于直线 对称,则 的值是 【解析】分析:由对称轴得 ,再根据限制范围求结果. 详解:由题意可得 ,所以 ,因为 ,所以 点睛:函数 (A>0,ω >0)的性质:(1) ; (2)最小正周期 ; (3)由 求对称轴; (4)由 求增区间; 由 12. 【2018 年新课标 I 卷文】△ , 的内角 求减区间. 的对边分别为 ,则△ 的面积为________. ,已知 【答案】 【解析】分析:首先利用正弦定理将题中的式子化为 , 利用余弦定理, 结合题中的条件, 可以得到 进一步求得 ,利用三角形面积公

相关文档

专题03三角函数与平面向量文-2018年高考题和高考模拟题数学(文)分项版汇编Word版含解析
专题03 三角函数与平面向量文-2018年高考题和高考模拟题数学(文)分项版汇编 含解析
专题03 三角函数与平面向量文-2018年高考题和高考模拟题数学文分项版汇编含解析
专题3 三角函数与平面向量文-2018年高三文科数学高考题和模拟题分类汇编Word版含解析
【数学】专题03三角函数与平面向量文-2018年高考题和高考模拟题数学文分项汇编Word
专题03 三角函数与平面向量理-2018年高考题和高考模拟题数学(理)分项版汇编 含解析
专题03 三角函数与平面向量理-2018年高考题和高考模拟题数学理分项版汇编含解析
2018年高考题数学(文)分项版汇编专题03 三角函数与平面向量 Word版含解析
专题03三角函数与平面向量文-2018年高考题和高考模拟题数学(文)分项版汇编含解析
2018年高考题和高考模拟题数学(文)——专题03 三角函数与平面向量分类汇编(解析版)
电脑版