【精品】高中数学第一章三角函数1.4.1任意角的正弦余弦函数1.4.2单位圆与周期性教案北师大版必修4

精品小初高学习文件

1.4.1

任意角的正弦、余弦函数
1.4.2 单位圆与周期性 整体设计

教学分析 从初中的锐角三角函数到高中的任意角的三角函数, 是学生在三角函数认知结构上的一 次质的变革.要使这次认知结构的变革在课堂上顺利完成,关键是抓住三角函数的定义,其 媒介是从初中的直角三角形转化为高中的平面直角坐标系 .因此,准确理解任意角的三角函 数定义是极其重要的. 在初中, 学生已经学过锐角三角函数,它是用直角三角形边长的比来刻画的.锐角三角函 数的引入与“解三角形”有直接关系.任意角的三角函数是刻画周期变化现象的数学模型, 它与“解三角形”已经没有什么关系了.因此,与学习其他基本初等函数一样,学习任意角的 三角函数,关键是要使学生理解三角函数的概念,并能用三角函数描述一些简单的周期变化 规律,解决简单的实际问题. 本节教材的安排是以锐角三角函数为引子.由于我们已将角推广到任意角的情况,而且 一般都是把角放在平面直角坐标系中,这样一来,我们就在直角坐标系中来找直角三角形, 从而引出单位圆.利用单位圆的独特性, 是高中数学中的一种重要方法.由于三角函数与单位 圆之间的这种紧密的内部联系,使得我们在讨论三角函数的问题时,对于研究哪些问题以及 用什么方法研究这些问题等,都可以从圆的性质(特别是对称性)中得到启发.在三角函数的 研究中,数形结合思想起着非常重要的作用. 关于单位圆与周期性,教材上是根据在单位圆中,任意角的正弦、余弦函数定义得到周 期函数的特征,然后通过分析两个等式直接下了定义.这样定义对学生来说来得有些突然, 且没有应用例子.这样的效果使学生仅仅知道了周期函数及最小正周期的定义而不会应用, 而定义的应用在好多的代数试题中有所涉及.因此,本教案设计时加了一个例题和两个变式 训练,难度不大,算是抛砖引玉.同时,周期性作为函数的重要性质之一,在备课资料中做了 扩展,以供学生课余时间进一步探究时查询,为学生的进一步探究提供一个跳板.以上内容 在设计时都遵循了由易到难,由特殊到一般,由具体到抽象的认知规律,以便于学生接受并 培养学生灵活运用知识的能力. 利用信息技术,可以很容易地建立角的终边和单位圆的交点坐标、单位圆中的三角函数 线之间的联系,并在角的变化过程中,将这种联系直观地体现出来.所以,教学时尽可能的利 用信息技术,帮助学生更好地理解正弦、余弦函数的本质,激发学生对数学研究的热情,培 养学生勇于发现、勇于探索、勇于创新的精神.通过学生之间、师生之间的交流合作,实现 共同探究、教学相长的教学效果. 三维目标 1.通过回忆初中锐角的正弦函数定义, 理解通过单位圆引入任意角的正弦函数的意义, 熟练 记忆正弦、余弦函数值在各象限的符号;掌握周期函数的概念及最小正周期的意义. 2.通过本节课的学习,使学生对正弦、余弦函数的概念有一个全新的认识,对本章第一节的 周期现象有了具体的定量的分析;在由锐角的正弦函数推广到任意角的正弦函数的过程中, 体会特殊与一般的关系,形成一种辩证统一的思想;通过单位圆的学习,建立数形结合的思 想,激发学生的学习积极性,培养学生分析问题、解决问题的能力. 重点难点 教学重点:任意角的正弦、余弦函数定义及正弦、余弦函数值在各象限的符号;周期函 数、最小正周期. 教学难点:对任意角的正弦、余弦函数定义的深刻理解及周期函数的概念. 精品小初高学习文件

精品小初高学习文件 课时安排 1 课时 教学过程 导入新课 思路 1.教科书在定义任意角的正弦、余弦函数之前,作了如下铺垫:直角三角形为载 体的锐角三角函数,引入弧度的概念后的三角函数的写法.因此教师可先让学生看教科书上 的三角函数初中定义, 回忆锐角三角函数概念, 借助于直角三角形表示锐角三角函数的意义, 从而为定义任意角的正弦、余弦奠定基础并引入单位圆,由此展开新课. 思路 2.设疑引入,我们把角的范围推广了,锐角三角函数的定义还能适用吗?譬如三 角形内角和为 180°, 那么 sin200°的值还是三角形中 200°的对边与斜边的比值吗?类比 角的概念的推广,怎样修正三角函数定义?由此展开新课.另外用“单位圆定义法”单刀直 入给出定义,然后再在适当时机联系锐角三角函数,这也是一种不错的选择. 推进新课 新知探究 提出问题 ① 复 习 初 中 锐 角 三 角 函 数 定 义 ( 多 媒 体 投 影 ) 可 问:sinα =________,cosα =____________ ②阅读课本,理解什么是单位圆. ③将锐角 α 放到直角坐标系中,其正弦、余弦函数又是怎样的呢? ④类比初中三角函数的定义, 利用单位圆可否把锐角三角函数推广到任意角的三角函数 呢? ⑤当角 α 的终边分别在第一、第二、第三、第四象限时,角 α 的正弦、余弦函数值的 正负号分别是什么? 活动:我们学习角的概念的推广和弧度制, 就是为了学习三角函数.教师与学生一起探究, 在 对边 初中,我们学习了锐角 α 的正弦函数值:sinα = .然后设问:把角放到平面直角坐标 斜边 系中,我们来看看会是什么情况呢?如图 1 在直角坐标系中,以原点为圆心,以单位长为半 径的圆,称为单位圆.给定一个锐角 α ,使角 α 的顶点与原点重合,始边与 x 轴正半轴重 合,终边与单位圆交于点 P(u,v),则点 P 的纵坐标 v 是角 α 的正弦函数值,横坐标 u 是角 α 的余弦函数值,即 sinα =v,cosα =u.

图1 由图 1 可知,当 α =0 时,sin0=v=0,cos0=u=1; 当α =

?
2

时,sin

?
2

=v=1,cos

?
2

=u=0.

这样就得到定义在[0,

?
2

]上的角 α 的正弦函数 v=sinα 和余弦函数 u=cosα .

以上显然不能包含所有的角,但是,我们可以仿照锐角正弦函数的定义.你认为该如何 定义任意角的正弦函数? 精品小初高学习文件

精品小初高学习文件 一般地,如图 2 所示,在直角坐标系中,给定单位圆,对于任意角 α ,使角 α 的顶点 与原点重合,始边与 x 轴正半轴重合,终边与单位圆交于点 P(u,v),那么点 P 的纵坐标 v 叫 作角 α 的正弦函数,记作 v=sinα ;点 P 的横坐标 u 叫作角 α 的余弦函数,记作 u=cosα

图2 通常,我们用 x 表示自变量,即 x 表示角的大小,用 y 表示函数值.这样,我们就定义了 任意角的三角函数 y=sinx 和 y=cosx.它们的定义域为全体实数,值域为[-1,1]. 利用课件出示图 3,教师引导学生观察,当角 α 的终边分别在第一、第二、第三、第 四象限时,角 α 的正弦、余弦函数值的正负号的情况.教师要让学生自己思考探究,确切理 解正弦、余弦函数值在各象限的符号情况,并指导学生记忆自己的探究所得.

图3 正弦、余弦函数的定义告诉我们,三角函数在各象限内的符号,取决于 u,v 的符号.当点 P 在第一、二象限时,纵坐标 y>0;点 P 在第三、四象限时,纵坐标 y<0.所以,正弦函数值对 于第一、二象限角是正的,对于第三、四象限角是负的(可制作课件展示).同样地,余弦函数 在第一、四象限是正的,在第二、三象限是负的;正切函数在第一、三象限是正的,在第二、 四象限是负的,即“一全正,二正弦,三正切,四余弦”. 教师指导学生将自己的思考探究结果先填入下表,然后再填入直角坐标系的各个象限 中,以便于加强记忆,灵活运用. 象限 函数 sinα cosα 第一象限 第二象限 第三象限 第四象限

在指导学生思考探究过程中, 教师应点拨学生注意一些问题: 尽管我们从锐角三角函数 精品小初高学习文件

精品小初高学习文件 出发来引导学生学习任意角的三角函数, 但任意角的三角函数与锐角三角函数之间并没有一 般与特殊的关系.教师在教学中应当使学生体会到, 用单位圆上点的坐标表示锐角三角函数, 不仅简单、方便,而且反映本质,这也是数形结合的充分体现,思考时注意领悟. 教师还可以引导学生分析三角函数定义中的自变量是什么 ,对应关系有什么特点,函数 值是什么?特别注意 α 既表示一个角,又表示一个实数(弧度数).“它的终边与单位圆交于 点 P(x,y)”包含两个对应关系.从而可以把三角函数看成是自变量为实数的函数.特别指出 的是:正弦、余弦函数都是以角为自变量,以比值为函数值的函数,因此 sinα 不是 sin 与 α 的乘积,而是一个比值;三角函数的记号是一个整体,离开自变量的“sin”“cos” 是没有 意义的 . 利 用坐标平面内 点的坐标的特征我们还 可得到定义域 , 对于正弦 函数 sinα =y,因为 y 恒有意义,即 α 取任意实数,y 恒有意义,也就是说 sinα 恒有意义,所以正 弦函数的定义域是 R;类似地可写出余弦函数的定义域是 R. 讨论结果:略. 提出问题 ①观察图 4, 根据以上知识, 在单位圆中, 由任意角的正弦、 余弦函数定义能得到哪些结论? ②怎样定义周期函数? ③怎样确定最小正周期?

图4 活动:教师引导学生总结终边相同角的表示法有什么特点:我们知道,终边相同的角相差 2π 的整数倍,那么这些角的同一三角函数值有何关系呢 ?点拨学生从角的终边的关系到角之间 的关系,再到函数值之间的关系进行讨论,然后再用三角函数的定义证明.由三角函数的定义, 可以知道:终边相同的角的同一三角函数的值相等,也就是 终边相同的角的正弦函数值相等,即 sin(2kπ +x)=sinx,k∈Z; 终边相同的角的余弦函数值相等,即 cos (2kπ +x)=cosx,k∈Z. 上述两个等式说明:对于任意一个角 x,每增加 2π 的整数倍,其正弦函数值、余弦函 数值均不变.所以, 正弦函数值、 余弦函数值均是随角的变化呈周期性变化的.生活中有许多 周期性变化的现象,例如,钟摆的摆心到铅垂线的距离随时间的变化也呈周期性变化.我们 把这种随自变量的变化呈周期性变化的函数叫作周期函数, 正弦函数、 余弦函数是周期函数, 2kπ (k∈Z)为正弦函数、余弦函数的周期.例如,-4π ,-2π ,2π ,4π 等都是它们的周期. 其中 2π 是正弦、余弦函数正周期中最小的一个(可以证明),称为最小正周期. 一般地,对于函数 f(x),如果存在非零实数 T,任取定义域内地任意一个 x 值,都有 f(x+T)=f(x) 我们就把 f(x)称为周期函数,T 称为这个函数的周期. 特别注意:若不加特别说明,本书所指的周期均为函数的最小正周期. 讨论结果:①—③略. 应用示例 思路 1

精品小初高学习文件

精品小初高学习文件 例 1 在直角坐标系的单位圆中,α =-

?
4



(1)画出角 α ; (2)求出角 α 的终边与单位圆的交点坐标; (3)求出角 α 的正弦、余弦函数值.

图5 活动:教师引导学生画出单位圆,充分利用任意角的定义.教师要留给学生一定的时间,让学 生自己独立思考解决,可适时点拨引导学生习惯画图,充分利用数形结合,但要提醒学生注 意角 α 的任意性. 解:(1)如图 5,以原点为角的顶点,以 x 轴正半轴为始边,顺时针旋转 P,α =∠MOP=-

?
4

,与单位圆交于点

?
4

,即为所求作的角.

(2)由于 α =-

?
4

,点 P 在第四象限,所以点 P 的坐标为(

2 2 ,). 2 2

(3)根据任意角的三角函数定义,易得 sin(-

?
4

)=-

2 ? ? 2 , (- )= . 4 2 4 2

点评:本例的目的是让学生熟悉角与单位圆的关系,巩固并加深理解任意角的正弦、余弦函 数的定义以及利用单位圆解题,熟悉并善于利用数形结合的思想解题. 变式训练 求

5? 的正弦、余弦值. 3

图6 解:在平面直角坐标系中,作∠AOB=

5? ,如图 6. 3
3 1 ,). 2 2

易知∠AOB 的终边与单位圆的交点坐标为( 所以 sin
3 5? 5? 1 =,cos = . 2 3 3 2

精品小初高学习文件

精品小初高学习文件

3 的值. cos a 活动:教师可让学生独立思考这一题目,本题虽然看似简单,但内含分类讨论思想,教师可 以找两个学生来板演这个例题.对解答思路正确的学生给以鼓励,对思路受阻的学生教师要 指出其思路的不正确性,并适时的点拨学生应该怎样组织步骤.
例 2 已知角 α 的终边在直线 y=-3x 上,求 10sinα +
2 2 解:设角 α 终边上任一点为 P(k,-3k)(k≠0),则 x=k,y=-3k,r= k ? ( ?3k ) ? 10 |k|.

(1)当 k>0 时,r= 10 k,α 是第四象限角, sinα =
3 10 y ? 3k = =, 10 r 10k

1 10k r = = = 10 , k cos ? x
∴10sinα +

3 3 10 =10×()+3 10 =-3 10 +3 10 =0; 10 cos ?

(2)当 k<0 时,r=- 10 k,α 为第二象限角, sinα =

1 ? 3k 3 10 y r ? 10k = = , = = =- 10 , 10 k r ? 10k cos ? x
3 3 10 =10× +3×(- 10 )=3 10 -3 10 =0. 10 cos ?

∴10sinα +

综合以上两种情况均有 10sinα +

3 =0. cos ?

点评:本题的解题关键是要清楚当 k>0 时,P(k,-3k)是第四象限内的点,角 α 的终边在第 四象限;当 k<0 时,P(k,-3k)是第二象限内的点,角 α 的终边在第二象限,这与角 α 的 终边在 y=-3x 上是一致的. 思路 2
?sin? ? 0, (1) 1.求证:当且仅当不等式组 ? 成立时,角 θ 为第三象限角. ?cos ? ? 0(2)

活动:教师引导学生讨论验证在不同的象限内各个三角函数值的符号有什么样的关系,提示 学生从三角函数的定义出发来探究其内在的关系.可以知道:任意角的正弦、余弦函数的定 义告诉我们,三角函数在各象限内的符号取决于 x,y 的符号,当点 P 在第一、二象限时,纵坐 标 y>0,点 P 在第三、四象限时,纵坐标 y<0,所以正弦函数值对于第一、二象限角是正的, 对于第三、四象限角是负的;同样地,余弦函数在第一、四象限是正的,在第二、三象限是负 的. 证明:我们证明如果①②式都成立,那么 θ 为第三象限角. 因为①sinθ <0 成立,所以 θ 角的终边可能位于第三或第四象限,也可能位于 y 轴的非 正半轴上. 精品小初高学习文件

精品小初高学习文件 又因为②式 cosθ <0 成立,所以 θ 角的终边可能位于第二或第三象限或 x 轴的负半轴 上. 因为①②式都成立,所以 θ 角的终边只能位于第三象限. 于是角 θ 为第三象限角. 反过来请同学们自己证明. 点评:本例的目的是认识不同位置的角对应的三角函数值的符号,其条件以一个不等式出现, 在教学时要让学生把问题的条件、 结论弄清楚,然后再给出证明.这一问题的解决可以训练学 生的数学语言表达能力. 例 2 求下列三角函数值:

19? . 6 活动:教师引导学生总结终边相同角的表示法有什么特点:我们知道,终边相同的角相差 2π 的整数倍,这些角的同一三角函数值是相等的.教师可引导学生从角的终边的关系到角之间 的关系再到函数值之间的关系进行讨论,然后再用三角函数的定义证明.
(1)sin390°;(2)cos 解:(1)sin390°=sin(360°+30°)=sin30°= (2)cos

1 2

3 19? 7? 7? =cos(2π + )=cos =. 2 6 6 6 点评:本题主要是巩固任意角的正弦、余弦函数的意义,让学生体会三角函数值的符号只与 角的终边所在象限有关,与角的大小没有关系. 例 3 已知 f(x)是 R 上的奇函数,且 f(1)=2,f(x+3)=f(x),求 f(8). 活动:教师引导学生充分利用 f(x+3)=f(x),这个等式说明 3 即是函数 f(x)的周期,同时 引导学生回顾奇函数的定义.本例可由学生独立解决,教师适时地点拨. 解:由题意,知 3 是函数 f(x)的周期,且 f(-x)=-f(x), 所以 f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2. 点评:巩固周期函数的定义,体会周期的初步应用. 变式训练

设 f(x)=sin 解:∵f(1)=sin f(4)=sin

?
3
=

x,求 f(1)+f(2)+f(3)+…+f(72)的值.
3 3 2? ,f(2)=sin = ,f(3)=sinπ =0, 2 2 3

?
3

3 3 4? 5? =,f(5)=sin =,f(6)=sin2π =0, 2 2 3 3 ∴f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0.

7? ? 8? 2? 12? =sin ,f(8)=sin =sin ,…,f(12)=sin =sin2π , 3 3 3 3 3 ∴f(7)+f(8)+f(9)+f(10)+f(11)+f(12)=0. 同理,f(13)+f(14)+f(15)+f(16)+f(17)+f(18)=0,…,f(67)+f(68)+…+f(72)=0, ∴f(1)+f(2)+f(3)+…+f(72)=0. 知能训练 课本练习 1、2、3、4. 课堂小结 本节课我们给出了任意角三角函数的定义,并且讨论了正弦、 余弦、 正切函数的定义域. 任意角的三角函数实质上是锐角三角函数的扩展,是将锐角三角函数中边的比变为坐标与距
而 f(7)=sin 精品小初高学习文件

精品小初高学习文件 离、 坐标与坐标的比,记忆方法可用锐角三角函数类比记忆,至于三角函数的定义域可由三角 函数的定义分析得到.本节课我们重点讨论了两个内容,一是三角函数在各象限内的符号,二 是一组公式 , 两者的作用分别是 : 前者确定函数值的符号 , 后者将任意角的三角函数化为 0°—360°角的三角函数,这两个内容是我们日后学习的基础,经常要用,请同学们熟记. 作业 课本习题 1—4 A 组 1-5. 设计感想 1.关于三角函数定义法,总的说来就两种:“单位圆定义法”与“终边定义法”.这两种方 法本质上是一致的.正因为如此, 各种数学出版物中, 两种定义方法都有采用.在学习本节的 过程中可以与初中学习的三角函数定义进行类比学习.理解任意角三角函数的定义不但是学 好本节内容的关键,也是学好本章内容的关键.在教学中,教师应该充分调动学生独立思考 和总结的能力,以巩固对知识的理解和掌握. 2.教师在教学中,始终引导学生紧扣三角函数的定义,善于利用数形结合.在利用三角函数 定义进行求值时,应特别强调要注意横向联系,即不仅仅能求出该值,还要善于观察该值与其 他三角函数值之间的联系,找出规律来求解. 备课资料 备用习题 1.角 α 的终边经过点 P(2a,3a)(a≠0),则 cosα 的值是( ) A.

13 13

B.

13 12

C.±

13 13
x

D.±

2 13 13

2.已知 f(x)为奇函数,且 f(x+2)=f(x),当 x∈(0,1)时,f(x)=2 ,则 f( log 1 23)的值为
2

__________. 3.(2006 山东高考)已知定义在 R 上的奇函数 f(x)满足 f(x+2)=-f(x),则 f(6)的值为( A.-1 B.0 C.1 D.2 4.已知函数 f(x)(x∈R)是周期为 3 的奇函数,且 f(-1)=a,则 f(7)=________________. 参考答案: 1.D 2.-

)

23 16

3.B 4.-a

精品小初高学习文件


相关文档

[k12精品]高中数学第一章三角函数1.4.1任意角的正弦余弦函数1.4.2单位圆与周期性教案北师大版必修4
【精品学习】高中数学第一章三角函数1.4.1任意角的正弦余弦函数1.4.2单位圆与周期性教案北师大版必修4
高中数学第一章三角函数1.4.1任意角的正弦、余弦函数1.4.2单位圆与周期性教案北师大版必修4
高中数学 第一章 三角函数 1.4.1 任意角的正弦、余弦函数 1.4.2 单位圆与周期性教案 北师大版必修4
高中数学第一章三角函数1.4.1任意角的正弦余弦函数1.4.2单位圆与周期性教案北师大版必修420170825239
高中数学第一章三角函数1.4.1任意角的正弦、余弦函数1.4.2单位圆与周期性教案北师大版必修4课件
【教育专用】高中数学第一章三角函数1.4.1任意角的正弦余弦函数1.4.2单位圆与周期性教案北师大版必修4
高中数学第一章三角函数单位圆与任意角的正弦函数余弦函数的定义单位圆与周期性学案北师大版必修
高中数学第一章三角函数1.4.1单位圆与任意角的正弦函数、余弦函数的定义课件2北师大版必修4
电脑版